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What is a semiring

A semiring (A, +, 0, ·, 1) is defined by the following equations
for all x, y, z ∈ A:

(x + y) + z = x + (y + z) (xy)z = x(yz)
x + y = y + x x1 = x = 1x

x + 0 = x x0 = 0 = 0x

x(y + z) = xy + xz (x + y)z = xz + yz

Example. The natural numbers (N, +, 0, ·, 1) are a semiring.
• An idempotent semiring is a semiring A = (A,∨, 0, ·, 1)

such that x ∨ x = x.
• A is doubly idempotent if x ∨ x = x and xx = x.
• A is commutative if xy = yx.

What is a semilattice

A semilattice with 0 is an algebra (A,∨, 0) such that ∨ is
associative, commutative, idempotent (x ∨ x = x), and
x ∨ 0 = x.
A semilattice is partially ordered by x ≤ y ⇐⇒ x ∨ y = y.
A commutative doubly-idempotent semiring
(cdi-semiring) is of the form (A,∨, 0, ·, 1) such that:
• (A,∨, 0) is a semilattice with 0 (ordered by ≤)
• (A, ·, 1) is a semilattice with 1 (ordered by x v y ⇔ xy = x)
• x0 = 0, and x(y ∨ z) = xy ∨ xz holds for all x, y, z ∈ A.
Example. All bounded distributive lattices are
cdi-semirings where xy is the meet (greatest lower bound) of x
and y.
In this case x ≤ y if and only if x v y.

Three subclasses of cdi-semirings

Why look at restricted classes of cdi-semirings, and not the
whole class?

• While distributive lattices are well understood, the class of
cdi-semirings is a much bigger. There is no general
structure theory.
• The class of cdi-semirings is defined by a list of identities,

hence it is a variety.
• Chajda and Länger [1] proved cdi-semirings are the smallest

variety containing all bounded distributive lattices and S3, a
3-element semiring that is not a distributive lattice.

Consider the number of algebras for each size (up to
isomorphism)[3][4]

# of elements = 1 2 3 4 5 6 7 8
# of cdi-semirings 1 1 2 6 20 77 333 1589
# of distr. lattices 1 1 1 2 3 5 8 15

Outline

A commutative doubly-idempotent semiring (cdi-semiring) (S,∨, ·, 0, 1) is a semilattice (S,∨, 0) with x ∨ 0 = 0 and a semilattices
(S, ·, 1) with identity 1 such that x0 = 0, and x(y ∨ z) = xy ∨ xz holds for all x, y, z ∈ S. Bounded distributive lattices are
cdi-semirings that satisfy xy = x ∧ y, and the variety of cdi-semirings covers the variety of distributive lattices. Chajda and Länger
showed in 2018 that the variety of all cdi-semirings is generated by the 3-element cdi-semiring.
We show that there are cdi-semirings with a ∨-semilattice of height less than or equal to 2. We construct all cdi-semirings for which
their multiplicative semilattice is a chain with n + 1 elements, and we show that up to isomorphism the number of such algebras is
the nth Catalan number Cn = 1

n+1
2n

n

. We also show that cdi-semirings with a complete atomic Boolean ∨-semilattice on the set of
atoms A are determined by rooted preorder forests on the set A. From these results we obtain efficient algorithms to construct all
multiplicatively linear cdi-semirings of size n and all Boolean cdi-semirings of size 2n.

Seven cdi-semirings of height ≤ 2

The height of a join-semilattice is the length (# of elements
− 1) of the longest chain (= linear order) in it.
With the restriction on height of cdi-semirings to be less or equal
to two for (A,∨), we have the following theorem.

Theorem 1. [5] There are, up to isomorphism, seven
cdi-semirings of height ≤ 2.
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Catalan semirings

A Catalan semiring is a multiplicatively linear cdi-semiring,
i.e. xy = x or xy = y for all x, y.
For A and B Catalan semirings, we define the Catalan sum
C = A © B to be the structure over the disjoint union of A and
B.
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Figure 1:The Catalan sum C = A © B

The 0, 1 of C are 0A, 1A.

The number of Catalan semirings

Now we replace the restriction on height, with a restriction that
(A, ·) must be multiplicatively linear.

Theorem 2. [2] The number of Catalan semirings with n + 1
elements, up to isomorphism, is the nth Catalan number

Cn = 1
n + 1


2n

n

 = 1, 1, 2, 5, 14, 42, ...
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Boolean cdi-semirings

Finally, lets look at the case when we restrict (A,∨) to be a
finite Boolean ∨-semilattice. Define R on the atoms by
R(x, y, z) ⇐⇒ x ≤ yz.
Then xx = x ⇐⇒ (R(x, y, z)⇒ x = y or x = z).
Define P, Q from R by

P (x, y)⇔ R(x, y, x) Q(x, y)⇔ R(x, x, y).

Theorem 3. An idempotent ternary relation R ⊆ A3

satisfies (R(u, x, y) & R(w, u, z)⇒ ∃v(R(v, y, z) & R(w, x, v)))
if and only if (xy)z ≤ x(yz) if and only if the corresponding
reflexive relations P, Q satisfy
(P1) P (x, y) & P (y, z)⇒ P (x, z) P -transitivity
(P2) Q(x, y) & Q(x, z)⇒ Q(y, z) or P (z, y) PQ-Euclidianess
(P3) P (x, y) & Q(y, z) & x 6= y ⇒ P (x, z)

Hence · is associative if and only if (P1)− (P3) hold, also
with P , Q interchanged.
Note that the operation · is commutative if P = Q.

Boolean cdi-semirings from preorder forests

• A preorder is a reflexive transitive binary relation,
• A preorder forest is a preorder such that

P (x, y) & P (x, z)⇒ P (y, z) or P (z, y)
i.e., all the elements above a given element are linearly ordered.
• A preorder forest has singleton roots if every component

has a unique top element.

Theorem 4. Finite Boolean cdi-semirings are definitionally
equivalent to finite preorder forests with singleton roots.

• Hence all finite Boolean cdi-semirings can be constructed by
enumerating preorder forests with singleton roots.
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Figure 2:Preorder forests with singleton roots

Conclusion

In the theory of rings and other algebras, multiplicatively
idempotent elements often play a central role in controlling some
structural aspects of the algebra. The structure of idempotent
semirings in general is quite challenging, but with suitable
restrictions some nice characterizations can be found. Here we
considered commutative doubly idempotent semirings of height
≤ 2, or with a multiplicative linear order or with a Boolean
join-semilattice. In each case it was possible to give detailed
descriptions of the finite members that allow them to be
enumerated easily up to isomorphism. It is likely that some of
the techniques explored here can be applied to larger classes of
idempotent semirings by, for example, weakening the assumption
of commutativity or allowing distributive join-semilattices.
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