

CHAPMAN UNIVERSITY **SCHMID COLLEGE OF SCIENCE** AND TECHNOLOGY

The Poincaré Duality Theorem and its Applications

Natanael Alpay, Melissa Sugimoto, and Mihaela Vajiac

Chapman University

What is a Vector Space

A **vector space** is a set *V* , with addition and multiplication such that the following holds for all $u, v, w \in V$ and $a, b \in F$: Commutative, Associative, Additive identity, Additive inverse, Multiplicative identity, and the Distribution laws

A **linear map** from *V* to *W* is a function $T: V \to W$ with the following properties for all $u, v \in V$ and $\lambda \in F$:

A **linear functional** on *V* is a linear map from *V* to *F*, that is element of $\mathcal{L}(V, F)$.

A **dual space** of V , denoted by V^* , is the vector space of all linear functionals on *V*.

$$
T(u+v)=Tu+Tv,\quad T(\lambda v)=\lambda T(v)
$$

An **isomorphism** is an invertible linear map

 $\mathcal{L}(\mathbf{V}, \mathbf{W})$ is the set of all linear maps from V to W.

The Five Lemma

A sequence of maps $d_0, d_1, \ldots d_n$, is an **exact sequence** if $Im(d_{k-1}) = Ker(d_k)$

A **short exact sequence** is of the form:

$$
0 \to A \xrightarrow{f_1} B \xrightarrow{f_2} C \xrightarrow{0}
$$

A **long exact sequence** is of f_0, f_1, \ldots, f_n , has the from

 $\cdots \stackrel{f_0}{\rightarrow} A_0 \stackrel{f_1}{\rightarrow} A_1 \stackrel{f_2}{\rightarrow} A_2 \rightarrow \ldots$

The five lemma Given a commutative diagram of Abelian groups and group homomorphisms as in Figure [1](#page-0-0) below, in which the rows are exact sequence, if the maps α, β, δ , and ε are isomorphism, then γ is also an isomorphism.

Figure 1:A commutative diagram to show the Five Lemma

Smooth Manifold

A **diffeomorphism** is a map $f: X \to Y$ such that f is a homeomorphism, and both f and f^{-1} are smooth(differentiable). A smooth manifold of dimension m is a subset $M \subset \mathbb{R}^n$ such that for each $x \in M$, *x* has a neighborhood $W \cap M$ that is diffeomorphic to an open subset U of the euclidean space \mathbb{R}^m .

A basis (b_1, \ldots, b_n) determines some **orientation** as basis (b_1) b'_i , ..., b'_n) if: $b'_i = \sum_j a_{i,j} b_i$, $det(a_{i,j}) > 0$.

In this talk I will explain the duality between the deRham cohomology of a manifold M and the compactly supported cohomology on the same space. This phenomenon is entitled "Poincaré duality" and it describes a general occurrence in differential topology, a duality between spaces of closed, exact differentiable forms on a manifold and their compactly supported counterparts. In order to define and prove this duality I will start with the simple definition of the dual space of a vector space, with the definition of a positive definite inner product on a vector space, then define the concept of a manifold. I will continue with the definition of differential forms on a differentiable manifold and their corresponding spaces necessary to this analysis. I will then introduce the concepts of a good cover of a manifold, manifolds of finite type, and orientation, all necessary concepts towards the goal of defining and proving Poincaré duality. I will finish with the proof of the Poincaré duality in the case of *M* orientable and admits a finite good cover, with examples.

A **oriented smooth manifold** consists of a manifold *M* and a choice of orientation for each tangent *TMx*.

A **good cover** is an open cover $U = \{U_\alpha\}$ of a manifold M of dimension *m*. *M* where all nonempty finite intersections $U_{\alpha_0} \cap ... \cap U_{\alpha_p}$ are diffeomorphic to \mathbb{R}^m .

A **finite good cover** is a good cover *U* of *M* which is finite. Equivalently *M* is **of finite type**.

Outline

Hence we have by the Poincaré dual we know $H^q(s^n) \simeq (H^{n-q}(S^n))^*$ *. For* $q = 0$ *we have* $H^n(S^n) = \mathbb{R}$ *. For* $q = n$, $H^0(S^n) \simeq \mathbb{R}$. And since $\mathbb{R} = \mathbb{R}^*$, we obtain, $H_c^n(S^n) = \mathbb{R}$.

Since $H^n(\mathbb{R}^n) = 0$, the closed Poincaré dual is μ_p is trivial, and can be represented by any closed n –form on \mathbb{R}^n , but the compact Poincaré dual is the nontrivial class in $H^n_c(\mathbb{R}^n)$ represented by a bump from with total integral 1.

Poincaré duality for deRham cohomology

$$
H^*(U_1 \cup \cdots \cup U_k) \cup H^*(U_{k+1}) \implies H^{*+1}((U_1 \dots U_k) \cap U_{k+1})
$$

$$
\implies H^{*+1}((U_1 \dots U_k) \cap U_{k+1})
$$

• Then by the induction step and the Five Lemma: we get

$$
H^{*+1}(U_1 \ldots U_{k+1})
$$

Let

Proof idea. The proof is a proof by induction as follows:

Other forms of the Poincaré duality

The theorem can be extended to any orientable manifold by the Mayer-Vietoris theorem, as follows:

Theorem. *If M is an orientable manifold of dimension n, whose cohomology is not necessarily finite dimension, then q n*−*q* ∗

$$
H^q(M) \simeq (H_c^{n-q}(M))^*
$$

for any integer q.

Proof idea. *The finitness assumption on the good cover is not necessary, then by closer of analysis of topology of a manifold can be extended by the Mayer-Vietoris theorema.*

\n- Let
$$
M
$$
 be a manifold $M = \bigcup_{k=1}^{l} U_k$.
\n- Induction basis: By lemma 5.6 we have $U_1 \cup U_2$.
\n- Induction Hypothesis: Assume $(U_1 \cup \cdots \cup U_k)$.
\n

- Induction Step: $(U_1 \cup \ldots U_k) \cup U_{k+1}$
- We have

Remark. *One should note that the the reverse implication that te following is not always true:*

$$
H^q_c(M)\simeq (H^{n-q}(M))^*
$$

The Euclidean space
$$
\mathbb{R}^n
$$

Example.*By the Five Lemma if Poincaré duality holds for* V , and $U \cap V$, then it holds for $U \cup V$. By induction on *the cardinality of a good cover. Considering M diffeomorphic to* R *n , and from the Poincaré lemmas*

$$
(\mathbb{R}^n) = \begin{cases} \mathbb{R} & \text{in dimension } 0 \\ 0 & \text{elsewhere} \end{cases}, H_c^*(\mathbb{R}^n) = \begin{cases} \mathbb{R} & \text{in dimension } n \\ 0 & \text{elsewhere} \end{cases}
$$

The Poincaré duality follows.

The Sphere space S *n*

Möbius strip

Counter example. *One may suspect that for cohomology with we compact support would have:* $H_c^*(E) \simeq H_c^{*-n}(M)$. *However this is not generally true; the open Möbius strip which is a vector bundle over S* 1 *, is a counter example. The compact cohomology of the Möbius strip is identically* 0*; but S* ¹ *does not match that, hence the Poincaré duality will not hold.*

Poincaré duals of a point in \mathbb{R}^n

Figure 3:Möbius strip

Example. *But if E and M are finite orientable manifolds, and thus the equation would hold using the Poincaré duality*

 $E_c^*(E) \simeq (H^{m+n-*}(E))^*$ *By applying the P.D thoerm on E* $\simeq (H^{m+n-*}(M))^*$ *By deRham cohomology homopoy* $\simeq H_c^{*-n}$ $\int_{c}^{* - n} (M)$ *By P.D on M*

(P.D):

 H_c^*

Conclusion

ré duality describes a general occurrence in differential gy, a duality between spaces of closed, exact differentiable on a manifold and their compactly supported counterparts.

$$
H^q(M)\simeq (H_c^{(n-q)}(M))
$$

ality between the deRham cohomology of a manifold M compactly supported cohomology on the same space.

References

[1] S. Acler, *Linear Algebra Done Right, third edition*. [2] R. Bott, L. W. Tu, *Differential Forms in algebraic Topology* [3] J. W. Milnor, *Topology From the Differentiable Viewpoint*