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Neurons and History

The perceptron was first inspired by neurons which are the build-
ing blocks of the nervous system. Neurons receive and transmit
signals to different parts of the body. This is carried out in both
physical and electrical forms.

Perceptron

The perceptron is the building block for neural networks and
is based on a simplified model of a single biological neuron in our
brains, that imitate the real neuron by:
* Taking input layer - Y = 〈y1, . . . yN〉.
* Computer the weighted sum ν =

∑
i yiwi = 〈Y,w〉.

* Pass it through the activation function activation function ϕ.
* Obtain the output layer if reach final layer, else pass result to
followed hidden later.

Figure 1: Multi-layer Perceptron with two hidden layers, from [1] .

The decision boundary is a hyper plane of dimension n − 1
for n inputs, for 2 inputs, it is a line. The weights, wi’s, are
perpendicular to the decision boundary and determines its slope.
Perceptron convergence theorem states that there is a
iterative way to find a decision boundary A which separate
the two classes after a finite number of iteration.
Perceptron Theorem states that a single layer system can
be used to describe any Boolean function using the activation
function.

Activation function

A continuous function ϕ whose derivative is used to calculate δ,
hence its only restriction is to be differentiable, such as:

Logistic function: of the form

ϕj(vj(n)) = 1
1 + exp(−avj(n))

, a > 0.

with derivative

ϕ′j(vj(n)) = a exp(−avj(n))
[1 + exp(−avj(n))]2

= ayj(n)[10yj(n)]

Binomial function: of the form

ϕj(vj(n)) =

{
0, , vj(n) < 0
1, , vj(n) ≥ 0

.

Outline

Neurons are the building blocks of the nervous system, that communicates with other cells via specialized connections called synapses.
There are several different types of neurons that facilitate the transmission of information.
The perceptron is the building block of artificial neural networks and is an algorithm for supervised learning of binary classifiers
function which decides whether or not an input, represented by a vector of numbers, belongs to some specific class. The perceptron
is based on a simplified model of the biological neurons in our brain.
The perceptron algorithm was invented in 1958 by Frank Rosenblatt for linearly separable data. For non-linearly separable, we have
RBF networks and support vector machine methods.

Perceptron Algorithm

The perceptron algorithm was invented in 1958 by Frank
Rosenblatt, and is an iterative algorithm to find the decision
boundary where D = {d1, . . . , dN}, di = ±1 is the target/desired
result type.
We update based on the perceptron prediction x ·w, for a current
weight. Since ϕ(ν) ≤ 0 if and only if the predicted label is different
from d, which in that case we update the weight by w = w + yx.
This choice of update is to bring our current wrong prediction
closer to the current positive value, and if the data is linearly
separable (as we require it to be), by updating each point for a
certain number of times, the weights will eventually converge to a
current boundary.

Perceptron Algorithm Implementation

Following the perceptron algorithm, we implement the weight up-
date for a dataset of the form τ = {(yi, di)}, as follows

For i in range of (0, ’num of iterations’)
For each pair (y, d) in (Y, D):
ν = d(y · w)
If ϕ(ν) ≤ 0 :
w = w + yx -we update the weight

When implementing the perceptron we first split our data set, and
train it on a part of our data set, that we perform the perceptron
for the first time. Then to test, we perform the perceptron on the
other part of the data set.

Figure 2: Perceptron Algorithm implemented using binomial activation func-
tion. The train set on the left and test set on the right, this allows us to test
our classifier with other points to verify it works not only for our dataset.

Radial Basis function

The radial-basis function (RBF) classification is used on the
cases when data is not linearly separable. We move the problem
to higher dimension to separate the classes of the output layer.
Micchelli’s Theorem states that for {xi}Ni=1 set of distinct
points in Rm0. The N×N interpolation matrix Φ = {ϕi,j}Ni,j=1
i.e. ji-th element ϕij = ϕ(||xi − xj||), is non singular.
The Gaussian positive definite radial basis function kernel is

ϕj(xi, xj) = exp

(
− 1

2σ2
j

||xi − xj||2
)
≤ 1,

with σ2
j =

∑
C(i)=j ||xi− µ̂j||2 for encoder C(i) = j that maps xi

to jth cluster of data,
With the K-mean algorithm we find σ by minimizing the
cost function J(C) =

∑K
j=1 σ

2
j . Then the recursive least

squares (RLS) minimizes J(c) with new weight each iteration.

Recursive Least Squares Algorithm

The least square form is ŵ(n) = r(n)R−1(n), where
1. Define recursively K-to-K correlation function R(n) as

R(n) =
n∑
i=1

Φ(xi)ΦT (xi) = R(n− 1) + Φ(n)ΦT (n).

2. Define encoder between desired output and hidden output

r(n) =
n∑
i=1

Φ(xi)d(i).

3. Weight vector ŵ(n) that is optimized by least-square method.
Consider the linear regression model d(n) = wTΦ(n)+ε(n), where
ε(n) is error term of zero variance σ2

ε . Then with the state-error
covariance matrix E[(w − ŵ(n))(w − ŵ(n))T ] = σ2

εR
−1(n).

We get the final simplification for the RLS using the RLS gain
vector g(n) = R−1(n)Φ(n) and get the updated weight as

ŵ(n) = ŵ(n− 1) + g(n)α(n),
using the prior estimation error before the update

α(n) = d(n)− ΦT (n)w(n− 1) = d(n)− wT (n− 1)Φ(n).
Key points to note:
1. The maximum value that the RBF kernel ϕj can be is 1 and

happens when ||xi−xj||2 = 0, i.e. points are the same xi = xj.
2. Distance ||xi−xj||2 represents an analog to dissimilarity, as if

distance between the points increases, less similar, i.e. ϕj < 1.

RBF Algorithm and Implementation

Using the K-mean and RLS Algorithm we can describe a hybrid
learning procedure for a RBF network, whose advantage is its
computational effectiveness. Works as follows:
Input layer, Take an input vector x denoted by m0.
Hidden layer, Compute σj for ϕj using the K-mean algorithm.
Output layer, Get output layer Φ(xi) and perform RLS algorithm.
Repeat , Perform algorithm until all ϕj ≈ 1.

Figure 3: RBF hybrid learning algorithm implementation

Support vector machine

Support vector machine is an algorithm that constructs a
hyperplane such that the margin of separation is maximized.
Given data set {xi, di}, we define the optimum hyper plane as

wT · ΦT (x) =
∞∑
j=1

wjϕj(x)

{
≥ 0, di = +1
≤ 0, di = −1

with weight vector defined as w =
∑N

i=1αidiΦ(xi) for Lagrange
multipliers αi ≥ 0 such that

∑N
i=1αidi = 0.

Support vectors are the vectors in which the hyper plane equa-
tion is 0, we define the Kernel using the inner product

K(x, xi) = ΦT (xi)ΦT (x) =
∞∑
j=1

ϕj(xi)ϕj(x).

So, wTΦ(x)T =
∑
αidiΦT (xi)Φ(x) =

∑
αidiK(x, xi) ≥ 0.

Mercer’s Theorems states that a symmetric Kernel K de-
fined in closed interval can be extended in the series form

K(x, x′) =
∞∑
i=1

λiϕi(x)ϕi(x′i), λi > 0

and it would converge absolutely iff
∫ b
a

∫ a
b K(x, x′)ψ(x′)dxdx′ ≥

0 for all
∫ b
a ψ

2(x)dx <∞.
The kernel allows the construction of surface that is linear the
image space. Define the dual form for SVM optimization:

Q(α) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjdidjK(xj, xi),

the only requirement is for K to satisfy Mercer’s Theorem, such
as the Gaussian RBF.
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