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What is a distributive lattice

A lattice is an algebra (A,∧,∨) defined by the following
equations for all x, y, z ∈ A

(x ∨ y) ∨ z = x ∨ (y ∨ z) (x ∧ y) ∧ z = x ∧ (y ∧ z)
x ∨ y = y ∨ x x ∧ y = y ∧ x

x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x

It is distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
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Figure 1: Distributive lattices of size 6 or less with join-irreducibles in black.

A lattice is bounded if it has a bottom and a top element.
In a lattice, x is a complement of y if x ∧ y is the bottom
element and x ∨ y is the top element.
A bounded distributive lattice is Boolean if every element has
a complement.
A lattice is complete if ∧S and ∨S exist for all S ⊆ A.

Join-irreducibles and partial orders

x is completely join-irreducible if x = ∨S =⇒ x ∈ S.
Let J(A) denote the set of completely join-irreducibles of A.
If A is a Boolean lattice, then J(A) = At(A) which is the set of
all elements immediately above the bottom element.
A lattice is perfect if every element is a join of completely
join-irreducibles and a meet of completely meet-irreducibles.
(W,≤) is a partially-ordered set if for all x, y, z ∈ W :
x ≤ x (reflexivity), x ≤ y and y ≤ x implies y = x
(antisymetric), x ≤ y and y ≤ z implies x ≤ z (transitivity).

Figure 2:Partially ordered sets of join-irreducibles.

A downset is a subset X such that y ≤ x ∈ X implies y ∈ X .
Let D(W,≤) be the set of all downsets.
The lattice of downsets is (D(W,≤),∩,∪).
Theorem 1. A distributive lattice A is complete and perfect
if and only if it is isomorphic to the lattice of downsets of a
partial order.

Outline

A lattice-ordered magma (`-magma for short) (A,∧,∨, 0, ·) is a lattice with 0 and a binary operation · such that x0 = 0 = 0x,
x(y ∨ z) = xy ∨ xz, (x ∨ y)z = xz ∨ yz, and x ∨ 0 = x hold for all x, y, z ∈ A.
A distributive idempotent `-magma (or di`-magma) is an `-magma A that satisfies x∧ (y∨z) = (x∧y)∨ (x∧z) and xx = x.
Let J(A) be the set of completely join-irreducible elements of A, and define the property of weakly conservative as

xy = x ∧ y or xy = x or xy = y or xy = x ∨ y

for all x, y ∈ J(A).
We show that every complete perfect weakly conservative di`-magma A is determined by two binary relations on the partially-ordered
set J(A). If two binary relation coincide and satisfy preorder forest axioms then we obtain d`-semilattices.
From these results we obtain efficient algorithms to construct all weakly conservative di`-magmas and d`-semilattices of size n.

What is a lattice-ordered magma

A lattice-ordered magma (`-magma for short)
(A,∧,∨, ·, 0) is a lattice with a binary operation · and 0 such
that for all x, y, z ∈ A

x0 = 0 x(y ∨ z) = xy ∨ xz

0x = 0 (x ∨ y)z = xz ∨ yz

x ∨ 0 = x

An `-magma is associative if for all x, y, z, (xy)z = x(yz), and
commutative if xy = yx.
An `-magma is idempotent if xx = x.
This is equivalent to x ∧ y ≤ xy ≤ x ∨ y.
An `-semilattice is an `-magma that is associative,
commutative and idempotent.

Birkhoff frames

Let A be a distributive complete prefect `-magma. Then define
(J(A),≤, R) to be the Birkhoff frame of A where the ternary
relation R is given by R(x, y, z) ⇐⇒ x ≤ yz.
From the definition of `-magama, · is order preserving, R is
down-up-up-closed, which means that for x, x′, y, y′, z, z′

R(x, y, z) & x′ ≤ x & y ≤ y′ & z ≤ z′ =⇒ R(x′, y′, z′)

More generally, define a Birkhoff frame (W,≤, R), where (W,≤)
is a poset and R ⊆ W 3 is down-up-up-closed.
For a Birkhoff frame W define the downset algebra
D(W) = (D(W,≤),∩,∪, ·, ∅), where for Y, Z ∈ D(W,≤)

Y · Z = {x ∈ W | R(x, y, z) for some y ∈ Y and z ∈ Z}.

Note that Y · Z is a downset by the down-up-up property of R.
Theorem 2. Let W be a Birkhoff frame. Then
• D(W) is a distributive complete perfect `-magma.
• D(W) is associative if and only if
∃u(R(u, x, y) & R(w, u, z)) ⇐⇒ ∃v(R(v, y, z) & R(w, x, v)).
• D(W) is commutative if and only if

R(x, y, z) ⇐⇒ R(x, z, y).
• D(W) is idempotent if and only if for all x, y, z ∈ W ,

R(x, x, x), and (R(x, y, z) =⇒ x ≤ y or x ≤ z).

Weakly conservative

A binary operation is conservative if it satisfies for all x, y ∈ A

xy = x or xy = y.

A perfect `-magma is called weakly conservative if it
satisfies the universal formula for all x, y ∈ J(A)

xy = x ∧ y or xy = x or xy = y or xy = x ∨ y.

A Birkhoff frame (W,≤, R) is weakly conservative, if for all
x, y, z ∈ W , x ≤ y =⇒ R(x, x, y) & R(x, y, x) and
R(x, y, z) ⇐⇒
x≤ y & x ≤ z or x ≤ y & R(y, y, z) or x ≤ z & R(z, y, z).

Theorem 3. A Birkhoff frame W is weakly conservative if
and only if D(W) is weakly conservative.

PQ-frames

(W,≤, P, Q) is a PQ-frame if
1 (W,≤) is a poset.
2 P (x, y) & x ≤ u & x � v & y ≤ v =⇒ P (u, v)
3 Q(x, y) & x ≤ u & x � v & y ≤ v =⇒ Q(u, v)
4 x ≤ y =⇒ P (x, y) & Q(x, y)
Theorem 4. Let (W,≤, P, Q) be a PQ-frame, and define
R(x, y, z) ⇐⇒
x ≤ y & x ≤ z or x ≤ y & Q(y, z) or x ≤ z & P (z, y).
Then (W,≤, R) is a weakly conservative Birkhoff frame.
Theorem 5. Let (W,≤, R) be a weakly conservative
Birkhoff frame and define

P (x, y) ⇐⇒ R(x, y, x) and Q(x, y) ⇐⇒ R(x, x, y).
Then (W,≤, P, Q) is a PQ-frame.

P-frames

A P-frame is a PQ-frame where P = Q.
P is transitive if P (x, y) & P (y, z) =⇒ P (x, z).
A P-frame is a preorder forest if it is transitive and
P (x, y) & P (x, z) =⇒ P (y, z) or P (z, y).

Theorem. Let (W,≤, P ) be a P-frame and define
R(x, y, z) ⇐⇒ x ≤ y, z or x ≤ y&P (y, z) or x ≤ z&P (z, y).
If P is a preorder forest, then
∃u(R(u, x, y) & R(w, u, z)) ⇐⇒ ∃v(R(v, y, z) & R(w, x, v)).

Conclusion

The point of the previous result is that it allows the construction
of complete distributive perfect `-semilattices from preorder
forests that contain a partial order.

# of elements n = 1 2 3 4 5 6
# of preorder forests 1 3 8 24 71 229
# of preorder forest P-frames 1 5 27 182

If a complete distributive perfect `-semilattice has an identity
element then it corresponds to a commutative distributive
idempotent residuated lattice.
All 33 preorder forest P-frames (W,≤, P ) with up to 3
join-irreducibles. Solid lines are the poset (W,≤), and dotted
lines indicate the additional edges of the preorder P . On the left
are the antichain preorder forests from [1].
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