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Detection compared to Classical Disproportionality
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Objectives

Quantity when machine-learning classifiers pro-
vide earlier and more precise adverse-event sig-
nal detection than classical disproportionality
on public FAERS, using temporal holdout and
reviewer-relevant metrics, and deliver practical

cuidance for safety triage.

Introduction

Signal detection in pharmacovigilance aims to
identify drug—adverse event pairs that occur more of-
ten than expected in spontaneous reports. Classical
methods rely on disproportionality statistics com-
puted from aggregated counts. However, modern re-
porting databases contain additional structured con-
text (e.g., seriousness, reporter type, concomitant
drug burden) that may help prioritize likely true
risks.

Outline /Method

® Construct 2 x 2 counts For each drug d,
adverse event e (MedDRA PT), and time (quater)
t, we form the 2 x 2 table of FAERS reports:

e —e
d a b
—d c d

o Classical scores: compute PRR, ROR, IC,
and EBGM-proxy from (a, b, ¢, d).

o Feature sets:
e Classical: PRR, ROR, IC, EBGM-proxy

e Report-quality: seriousness share, mean concomitant
drugs, reporter type share
e Temporal (tested): a;_; and burst indicator (removed in

the final “SAFE” model)

oML model: Gradient Boosting trained to
predict if a drug—event pair is a known positive.

N=a+b+c+d.

@ Calibration: isotonic calibration on training
data; use calibrated probabilities for ranking.

o Evaluation: temporal holdout (future quarters)
+ rolling 4-quarter windows; report

AUROC/AUPRC, and simple FDR-style cutofts.
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Performance Stability Across Time

Rolling temporal validation: AUPRC across windows

Validation window (4 quarters)

Figure 1: Rolling temporal validation (AUPRC). Each point
shows AUPRC when training on all quarters prior to a 4-
quarter validation window and evaluating on that future win-
dow. Performance varies across time but remains above base-

line, indicating robustness under time-respecting evaluation.

Feature Groups Contribution

Feature ablation: impact on AUPRC (GEBTs)
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Figure 2: Feature ablation study (GBTs). AUPRC under

different feature group removals: Full, No temporal (drop
burst/a,ey), No quality (drop seriousness/reporting proxies),

and No classical (drop PRR/ROR/IC/EBGM-proxy). This

isolates which information contribute most to signal ranking.

Important Result

Main finding: performance improves substantially after removing unstable temporal features.

o “Full” feature set: GBT AUPRC = 0.68 (near baseline in this pilot).
o “SAFE” model (drop: burst, a_prev): AUPRC =~ 0.85 on a temporal holdout.
o Rolling 4-quarter validation: mean AUPRC =~ 0.71 (std ~ 0.15), showing time-window variability.

Takeaway: ML can add value for prioritization, but temporal features require careful design to avoid

instability /leakage.

Mathematical Formulation

Supervised ML: For each (d, e, t) we build a fea-
ture vector x4, € RP from counts (a, b, ¢, d), clas-
sical scores (PRR, ROR, IC, EBGM-proxy), and
report-quality features. We predict label y € {0, 1}
indicating whether (d, e) is a known positive control.

Gradient boosting (nonlinear ML).
M

FM(x) — Z me(x)v

m=1
where each f,, is a shallow decision tree fit sequen-
tially to reduce the loss, and v is the learning rate.

Training. We train on earlier quarters and vali-
date on later quarters, reporting AUROC/AUPRC,
rolling-window stability, and operational metrics.
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Quality Under Class Imbalance

Precision-Recall (validation)
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Figure 3: Precision—Recall curve on temporal holdout. PR
curves summarize ranking performance under class imbalance.
The dashed line indicates baseline precision. Higher area under
the curve reflects improved prioritization of true drug—event

signals.

Reliability of Predicted Risk

Calibration (validation)
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Figure 4: shows a calibration (reliability) diagram comparing
predicted probabilities to observed event rates. The diagonal
line represents perfect calibration, while deviations reflect over-
or under-confidence; despite noise from limited sample sizes,
probabilities are sufliciently calibrated to support threshold-
based triage (e.g., FDR control).

Conclusion

e Gradient Boosting models can improve
ranking /triage of potential safety signals
compared to using a single disproportionality:.

e Temporal validation reveals
window-to-window variability; stability
improves with careful feature design.

e Next steps: expand labeled reference sets,
evaluate pure-classical baselines

(PRR/ROR/IC/EBGM as rankers), and redesign

temporal features to avoid leakage.
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